CLASSIFICATION OF COLOR BLIND STUDENTS AT SMA NEGERI 1 LHOKSEUMAWE USING NAÏVE BAYES ALGORITHM

  • Rozzi Kesuma Dinata Universitas Malikussaleh
  • Maryana Universitas Malikussaleh
  • Sujacka Retno Universitas Malikussaleh
  • Gadis Ayu Sofiana Universitas Malikussaleh
Keywords: Color Blind, Ishihara, Naïve Bayes

Abstract

This research aims to classify students and determine eye conditions with normal and partial color blindness by using Naïve Bayes algorithm. The research dataset was obtained from students at SMA Negeri 1 Lhokseumawe. The variables used in this research were 24 Plate Ishihara Tests with data collection techniques by using interviews, literature studies and questionnaires. Total data in this research are 140 data and divided into 110 training data and 30 testing data. The results showed that from 110 data trained, there were 69 students included in the normal group and 41 students included in the partial group. Then, the 30 testing data were tested into the classification system for color blind students using Naïve Bayes Algorithm. The accuracy level of the test results was 86.67% and 13.33% error.

References

Mustofa, H., & Mahfudh, A. A. (2019). Klasifikasi Berita Hoax Dengan Menggunakan Metode Naive Bayes. Walisongo Journal of Information Technology, 1(1), 1-12.

Barabino, S., Benitez-Del-Castillo, J. M., Fuchsluger, T., Labetoulle, M., Malachkova, N., Meloni, M., ... & Rolando, M. (2020). Dry eye disease treatment: the role of tear substitutes, their future, and an updated classification. Eur Rev Med Pharmacol Sci, 24(17), 8642-8652.

Maior, C. B. S., das Chagas Moura, M. J., Santana, J. M. M., & Lins, I. D. (2020). Real-time classification for autonomous drowsiness detection using eye aspect ratio. Expert Systems with Applications, 158, 113505.

Sarki, R., Ahmed, K., Wang, H., Zhang, Y., & Wang, K. (2022). Convolutional neural network for multi-class classification of diabetic eye disease. EAI Endorsed Transactions on Scalable Information Systems, 9(4), e5-e5.

Hasdyna, N., & Retno, S. (2022). Machine Learning Approach to Determine the Drug-Prone Areas in Lhokseumawe City, Indonesia. International Journal of Multidisciplinary Research and Analysis, 5(9), 2454-2463.

Li, J., Li, H., Umer, W., Wang, H., Xing, X., Zhao, S., & Hou, J. (2020). Identification and classification of construction equipment operators' mental fatigue using wearable eye-tracking technology. Automation in Construction, 109, 103000.

Agtzidis, I., Startsev, M., & Dorr, M. (2019, October). 360-degree video gaze behaviour: A ground-truth data set and a classification algorithm for eye movements. In Proceedings of the 27th ACM International Conference on Multimedia (pp. 1007-1015).

Gattoussi, S., Buitendijk, G. H., Peto, T., Leung, I., Schmitz‐Valckenberg, S., Oishi, A., ... & Zerbib, J. (2019). The european eye epidemiology spectral‐domain optical coherence tomography classification of macular diseases for epidemiological studies. Acta ophthalmologica, 97(4), 364-371.

Dinata, R. K., Hasdyna, N., Retno, S., & Nurfahmi, M. (2021). K-means algorithm for clustering system of plant seeds specialization areas in east Aceh. ILKOM Jurnal Ilmiah, 13(3), 235-243.

Salmi, N., & Rustam, Z. (2019, June). Naïve Bayes classifier models for predicting the colon cancer. In IOP conference series: materials science and engineering (Vol. 546, No. 5, p. 052068). IOP Publishing.

Surya, P. P., & Subbulakshmi, B. (2019, March). Sentimental analysis using Naive Bayes classifier. In 2019 International conference on vision towards emerging trends in communication and networking (ViTECoN) (pp. 1-5). IEEE.

Singh, M., Bhatt, M. W., Bedi, H. S., & Mishra, U. (2020). Performance of bernoulli’s naive bayes classifier in the detection of fake news. Materials Today: Proceedings.

Dinata, R. K., Retno, S., & Hasdyna, N. (2021). Minimization of the Number of Iterations in K-Medoids Clustering with Purity Algorithm. Rev. d'Intelligence Artif., 35(3), 193-199.

Niazi, K. A. K., Akhtar, W., Khan, H. A., Yang, Y., & Athar, S. (2019). Hotspot diagnosis for solar photovoltaic modules using a Naive Bayes classifier. Solar Energy, 190, 34-43.

Balaji, V. R., Suganthi, S. T., Rajadevi, R., Kumar, V. K., Balaji, B. S., & Pandiyan, S. (2020). Skin disease detection and segmentation using dynamic graph cut algorithm and classification through Naive Bayes classifier. Measurement, 163, 107922.

Ula, M., Anjani, F. T. T., Ulva, A. F., Sahputra, I., & Pratama, A. (2022). Application of Machine Learning With The Binary Decision Tree Model In Determining The Classification of Dental Disease. Journal of Informatics and Telecommunication Engineering, 6(1), 170-179.

Published
2023-04-13