IMPLEMENTATION OF MACHINE LEARNING USING THE K-NEAREST NEIGHBOR CLASSIFICATION MODEL IN DIAGNOSING MALNUTRITION IN CHILDREN

  • Mutammimul Ula Universitas Malikussaleh
  • Ananda Faridhatul Ulva Universitas Malikussaleh
  • Ilham Saputra Universitas Malikussaleh
  • Mauliza Mauliza Universitas Malikussaleh
  • Ivan Maulana Universitas Malikussaleh
Keywords: Classification, KNN, Children Machine Learning

Abstract

The problem faced today is the lack of nutrition for children which causes stunting. One way to prevent stunting problems is to provide input to the community in Aceh for the importance of providing adequate nutrition for children. This study classifies toddlers who are identified as stunting with the K-NN model technology which is modeled in machine learning, the results are grouped. The purpose of this study was to determine the detection of malnutrition in toddlers and to classify data on malnutrition in toddlers using the k-means clustering method and the system that was built could be used as a reference to monitor the growth and development of children. Then in classifying malnutrition in children based on the results of the nutritional status criteria in toddlers, it can be known based on the index of Body Weight for Age (W/U), Height for Age (TB/U), and Weight for Height (W/TB). by entering data values ​​from weight, height and gender of toddlers. The purpose of this study was to determine the detection of malnutrition under five at the Cut Meutia Hospital Kab. North Aceh. The process in the initial data analysis of Mr. ID, baby's name, gender, age, weight (kg), height (cm), the data to be classified for training data are 40 children in each region / village. In the assessment of nutritional status, it is classified as Malnutrition less than 3 SD or 70%, Malnutrition - 3 SD to < - 2 SD or 80%, Good Nutrition -2 SD to +2 SD, Over Nutrition >+2 SD. The results of the final score obtained are euclidean distance with a value of 1.3 with a ranking of malnutrition, age 1.6 months, weight (weight) 0.852, TB (height) 4.556 with euclidean distance with a value of 1.3 with a low ranking. For the second test data, age is 2.8 months, BB (weight) 0.222, TB (height) 4.556 with Euclidean distance with a value of 1.3 with a good rating of 0.778. The results of this study can be classified in children to children for each region in each region, village and sub-district of each Puskesmas in North Aceh Regency

References

M. Garenne, C. Ronsmans and H. Campbel, "The Magnitude of Mortality From Acute Respiratory Infections in Children Under 5 Years in Developing Countrie," World Health Stat Q, vol. 45, no. 2-3, p. 180–191, 1992.

W. Bank, "World Development Report: Investing in Health," Oxford Univ. Press, Oxford, 2012.

Mitra, M. (2015). Stunting problems and interventions to prevent stunting (a Literature Review). Jurnal Kesehatan Komunitas, 2(6), 254-261.

Widjayatri, R. D., Fitriani, Y., & Tristyanto, B. (2020). Sosialisasi Pengaruh Stunting Terhadap Pertumbuhan dan Perkembangan Anak Usia Dini. Murhum: Jurnal Pendidikan Anak Usia Dini, 16-27.

Waliulu, S. H., Ibrahim, D., & Umasugi, M. T. (2018). Pengaruh edukasi terhadap tingkat pengetahuan dan upaya pencegahan stunting anak usia balita. Jurnal Penelitian Kesehatan" SUARA FORIKES"(Journal of Health Research" Forikes Voice"), 9(4), 269- 272.

Ula, M., Ulva, A. F., Mauliza, M., Sahputra, I., & Ridwan, R. (2021). Implementation of Machine Learning in Determining Nutritional Status using the Complete Linkage Agglomerative Hierarchical Clustering Method. Jurnal Mantik, 5(3), 1910-1914.

Farah, N. d. ( 2015). The Factor Affecting Stunting on Toddlers in Rural and Urban Area. Pustaka Kesehatan, Vol. 3

Ula, M., Hendriana, Y., & Hardi, R. (2016, October). An expert system for early diagnose of vitamins and minerals deficiency on the body. In 2016 international conference on information technology systems and innovation (ICITSI) (pp. 1-6). IEEE.

Supariasa, I. D. (2001). Penilaian status gizi. Jakarta: Penerbit Buku. Kedokteran EGC.

Ula, M., Ulva, A. F., & Mauliza, M. (2021). Implementasi Machine Learning Dengan Model Case Based Reasoning Dalam Mendiagnosa Gizi Buruk Pada Anak”. Jurnal Informatika Kaputama (JIK), 5(2), 333-339.

Primasari, Y., & Keliat, B. A. (2020). Parenting Practices as Prevention of Stunting Impact in Children's Psychosocial Development. Jurnal Ilmu Keperawatan Jiwa, 3(3), 263-272.

Sapriatin, B., & Sianturi, F. A. (2020). Penerapan Teorema Bayes Mendeteksi Stunting Pada Balita. Jurnal Media Informatika, 3(1 Desember), 24-37.

Fricles Ariwisanto Sianturi, “Analisa metode teorema bayes dalam mendiagnosa keguguran pada ibu hamil berdasarkan jenis makanan,” Teknik Informasi dan Komputer (Tekinkom),vol. 2, no. 1, pp. 87–92, 2019.

A.Joshi, E. J. Dangra and D. M. K. Rawat, A decision tree based classification technique for accurate heart disease classification & prediction, vol. 3, no. 11, pp. 1–4, 2016.

A. Mustaqeem, S. M. Anwar, A. R. Khan, and M. Majid, A statistical analysis based recommender model for heart disease patients,Int. J. Med. Inform., vol. 108, October, pp. 134–145, 2017. https://doi.org/10.1016/j.ijmedinf.2017.10.008

Argina, A. M. (2020). Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes. Indonesian Journal of Data and Science, 1(2), 29-33.

Anggoro, D. A., & Kurnia, N. D. (2020). Comparison of accuracy level of support vector machine (SVM) and K-nearest neighbors (KNN) algorithms in predicting heart disease. International Journal, 8(5).

Rosdiana, R., Ula, M., & Aidilof, H. A. K. (2021). Implementasi Pemodelan Citra Model Svm (Support Vector Machine) Dalam Penentuan Pengklasifikasian Jenis Suara Kontes Burung. Jurnal Informatika Kaputama (JIK), 5(2), 317-324.

Yusniar, Y., Usman, U., Ula, M., Fakrurrazi, F., Salamah, S., & Qumar, M. (2021). Feasibility Strategy on Giving Capital for Salt Farmers in Increasing Economic Productivity Using KNN Classification Model. Jurnal Mantik, 5(3), 1818-1824.

Pratama, A., Salamah, S., Ula, M., & Hayana, N. (2021). Application Of Clustering Groups In Determining Land Suitability. Multica Science And Technology (MST), 1(2), 80-86.

Dananjaya, D., Werdiningsih, I., & Semiati, R. (2019). Decision Support System for Classification of Early Childhood Diseases Using Principal Component Analysis and K-Nearest Neighbors Classifier. Journal of Information Systems Engineering and Business Intelligence, 5(1), 13-22.

Published
2022-04-13