APPLICATION OF INTELLIGENT SYSTEM WITH BACKPROPAGATION MODEL IN CLOUD IMAGE CLASSIFICATION

  • Mulyadi Mulyadi Politeknik Negeri Lhokseumawe
  • Muhammad Ichwan Politeknik Negeri Lhokseumawe
  • Muhammad Rizka Politeknik Negeri Lhokseumawe
  • Mutammimul Ula Universitas Malikussaleh
Keywords: image processing, cloud, artificial neural network, backpropagation, euclidean distance

Abstract

The clouds have different patterns on each type and each type has different properties. The introduction of the type, shape, and nature of the cloud is indispensable in the weather forecasts so that the clouds can be classified. There are several methods used in the image classification process that is the method of the artificial neural network Backpropagation. The method of Backpropagation is one of the methods used for the classification process, in this research Backpropagation used on the training and testing process for the introduction of cloud imagery aimed at determining the type of cloud, before the second These stages are carried out imagery through the preprocessing process. From the training conducted using the Backpropagation method shows that this method generates the best weight value and saves that value into the database to do the testing process using a neural network Backpropagation. In addition, Backpropagation also has the ability to reduce errors by continuously correcting the weight until reaching the maximum target. Data used for training data as many as 92 cloud type image with each type of 10 imagery. In this study obtained a system success rate of 60.6%.

References

Jobard, Isabelle. (2001). Status Of Satellite Retrieval Of Rainfall At Different Scales Using Multi-Source Data. Scientific Workshop, 1-10.

Dewi, S. (2015). PENENTUAN DISTRIBUSI TIPE AWAN DI PROVINSI RIAU MENGGUNAKAN CITRA SATELIT MTSAT IR1. Jurnal Sains & Teknologi Modifikasi Cuaca, 16(1), 9-14.

Inoue, T. (1987a). A Cloud Classification with NOAA-7 Split Windows Measurements. Journal of Geophysical Research, 3991- 4000.

Syaifullah, M.D. (2011). Potensi Atmosfer dalam Pembentukan Awan Konvektif pada Pelaksanaan Teknologi Modifikasi Cuaca di DAS Kotopanjang dan DAS Singkarak 2010. Jurnal Sains & Teknologi Modifikasi Cuaca, 12(1), 9-16. doi: 10.29122/jstmc.v12i1.2185

Syaifullah, M.D. (2012) Penerapan Teknologi Modifikasi Cuaca (TMC) untuk Mengatasi Defisit Inflow PLTA Bakaru Periode 15 Februari s.d 03 Maret 2012. Jurnal Sains & Teknologi Modifikasi Cuaca, 13(1), 25-34. doi: 10.29122/jstmc.v13i1.2207.

Wallace, J.M., Hobbs, P.V. (2005). Atmospheric Science: An Introductory Survey, 2nd edition. Washington: Elsevier.

Pandjaitan, B. S., Rachmawati, A., Hidayat, R., Wirahma, S., & Vahada, A. D. (2019). Pemanfaatan Skema Daytime Microphysics Rgb Himawari 8 Untuk Mendeteksi Awan Cumulus Potensial Dalam Kegiatan Teknologi Modifikasi Cuaca. Jurnal Sains & Teknologi Modifikasi Cuaca, 20(2), 91-103.

D. C. Rini, “Klasifikasi Sinyal EEG Menggunakan Metode Fuzzy C-Means Clustering (FCM) Dan Adaptive Neighborhood Modified Backpropagation (ANMBP),” J. Mat. “MANTIK,” vol. 1, no. 1, p. 31, 2015.

N. S. Kapadia, D. P. Rana, and U. Parikh, “Weather Forecasting using Satellite Image Processing and Artificial Neural Networks,” Int. J. Comput. Sci. Inf. Secur., vol. 14, no. 11, p.1069, 2016.

S. Hardwinarto and M. Aipassa, “Rainfall monthly prediction based on artificial neural network: A case study in Tenggarong Station, East Kalimantan-Indonesia,” Procedia Comput. Sci., vol. 59, pp. 142–151, 2015.

M. Narvekar, P. Fargose, and D. Mukhopadhyay, “Weather Forecasting Using ANN with Error Backpropagation Algorithm,” in Proceedings of the International Conference on Data Engineering and Communication Technology, 2017, pp. 629–639.

Michael, N. (2005). Artificial intelligence a guide to intelligent systems.

Solomon, C., & Breckon, T. (2011). Fundamentals of Digital Image Processing: A practical approach with examples in Matlab. John Wiley & Sons.

Novitasari, D. C. R., Supatmanto, B. D., Rozi, M. F., Farida, Y., Setyowati, R. D., Junaidi, R., ... & Fatoni, A. R. (2020, March). Rainfall Prediction Based on Himawari-8 IR Enhanced Image Using Backpropagation. In Journal of Physics: Conference Series (Vol. 1501, No. 1, p. 012011). IOP Publishing.

P. J. Braspenning, F. Thuijsman, and A. J. M. M. Weijters, Artificial neural networks: an introduction to ANN theory and practice, vol. 931. Springer Science & Business Media, 1995.

D. C. R. Novitasari, A. Lubab, A. Sawiji, and A. H. Asyhar, “Application of Feature Extraction for Breast Cancer using One Order Statistic, GLCM, GLRLM, and GLDM,” Adv. Sci. Technol. Eng. Syst. J., vol. 4, no. 4, 2019.

J. A. I. Paski, A. Sepriando, and D. A. S. Pertiwi, “PEMANFAATAN TEKNIK RGB PADA CITRA SATELIT HIMAWARI-8 UNTUK ANALISIS DINAMIKA ATMOSFER,” vol. 4, no. 3, 2017.

G. Gupta, “Algorithm for image processing using improved median filter and comparison of mean, median and improved median filter,” Int. J. Soft Comput. Eng., vol. 1, no. 5, pp. 304–311, 2011.

A. Fanani, A. Yuniarti, and N. Suciati, “Geometric Feature Extraction of Batik Image Using Cardinal Spline Curve Representation,” vol. 12, no. 2, pp. 397–404, 2014.

Putra, D. (2010). Pengolahan Citra Digital. Yogyakarta: Andi Offset.

Comet (2013). Multispectral Satellite Aplications: RGB Product Explained. https://www.meted.ucar.edu/training_module.php?id=568#.XjoJz3duLg8)

Lensky, M., Rosenfeld, D. (2008). Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT). Atmospheric Chemistry and Physics, 8, 6739–6753. doi:10.5194/acp-8-6739-2008

Yudhi Andrian, Erlinda Ningsih. (2014). Prediksi Curah Hujan Di Kota Medan Menggunakan Metode Backpropagation Neural Network. 1-6.

Published
2022-04-13